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ABSTRACT

The non-linear transformations relating rectangular
coordinates to range instrumentation coordinates for con-
ventional radar, phased array radar, AME (Angle Measuring
Equipment) etc., are considered. The transformations are
linearly related through Jacobian matrices at the deri-
vative (rate) and first differential or discrete difference
(residuals cor linearizing about 2 nominal) level. State
variables near the singularity regions of these matrices
can cause numerical computer problems for the unwary
analyst.
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INTRODUCTION

The development of operational computer programs from
math-ware to software presents many opportunities for bad
output and expensive reruns. Systematic procedures for
obtaining computable math-ware from the physical problems
of range testing are being developed in the state-space
frame-work. A deeper understanding of the math-ware will
i enhance the analysts' ability to make judgments on the
1 practical implications of the quantitative answers pro-

E vided by the digital computer.

Range flight testing and trajectory state-vector
estimaticn normally requires as a minimum, the estimation
! of a nine dimensional state vector, three coordinates at
: each of the three levels: position, velocity, and accelera-
: tion. The transformations from rectangular to spherical
polar coordinates (FPS-16 radars) or sine-space coordinates
{phased-array radars) are non-linear. However at the
velocity level the transformations are achieved via the
Jacobian matrix as the connection matrix.

In most statistical data processing procedures for
range instrument measurements one computes residuals or
error vectors between actual measurements and estimated
measurements and actual states and estimated states.

These error vectors normally imply discrete differences
or approximations to differentials of vectors. The Jacobian
matrix provides the transformation between differentials of
rectangular coordinates and spherical-polar (radar coordi-
nates) or any other set of generalized coordinates, for
example sine-space coordinates occurring in phased-array
radar systems. Conventional least squares polynomial
filtering, or Kalman filters in which one linearizes about a
nominal trajectory or linearizes about the current state
estimates can lead the unwary analyst into computational
problems of ill-conditional matrices, or the scalar analog
of inverting trigonometric functions when the variables are
near singularities,

Quite often one estimates state variables at the
rectangular coordinate level, for example three position,
three velocity, and three acceleration coordinates. At
some point in the computations one transforms back to

%"““5
o o . -




A AL R oo 10

instrument coordinates to compute insirument errors. “he
computation of a matrix of variances and covariances between
the variables implies two variance matrices one a function
of the rectangular coordinates, the second a function of

the generalized coordinates and such that they are related
through a congruent transformation on the Jacobia=n matrix.

If one performs ;itatistical analysis and computations
on data originating from these instrumentation systems he
should be wary of 1ll-conditioned matrices or the equivalent
problem of solutions appearing unstable or meaningless.

The greatest insight into the values of the variables
where computational problems can occur comes from a vector-
matrix analysis of the geometry.

It is perhaps well-known that singularities of FPS-16
type radar coordinates occur near 90° elevation angles.
Perhaps it is not so well known that sine-space (phased-
array radars) singularities occur near 45° angles. Angle
measuring equipment (AME) that measures direction cosines
has singularities at zero elevation angles.

The mathematics of these relations are derived and
discussed below.
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COORDINATES AND JACOBIAN MATRICES

The non-linear relationships be .ween the rectangular
coordinates (x, y, z) - or when convenient (x;, X2, Xs) -
and five other sets of covering coordinates are developed.
At the position 1c-el the functional relationships are as
always non-linear. At the differential level the coordinates
are connect:' “y a Jacobian matrix, hence matrix analysis
tools are us.:ul, or the tools of linear transformation

theory.

Consider five sets of covering coordinates as indicated
by the many var.ibles shown in Figure 1.
z -

X
Os A

0, &2

,
/

X

A

FIGURE 1 - Covering Coovdinates

The point designated by the vector X has three independent
coordinates x; i=1,2,3, non-linearly related to three other
independent coordinates {except at singularities) q; 1=1,2,3

xy = X3(q1, 92, qs)
X2 = X2(q1, q2, qs) (1)
xs = Xs(q1, 92, qs)

for five sets of q;'s.
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Designate the five systems as

a. Rectangular cartesian coordinates (x,y,z) or (x;,
X2, XS)'

b. Spherical polar coordinates (r,A,l; FPS-16 type
radar. Optics type coordinates without range r.

c. Range and two direction cosines (r, cos 0;, cos 0;)
che unit sight line vector

é§;>1/z =<5 = (s1: ss, S3) (2)

is a fuaction of oniy two of the three s; independent coordi-
nates since

1 =5} + s+ a$ . (3)

The rectangular coordinates, s; take on many equivalent forms,
for example

Sy = cos O, = CECA = etc. (4)

Range equipment such as AME, (angle measuring electronic
equipment) outputs direction cosines (minus range).

d. Sine-space coordinates (r, sing;, sing,).

These coordinates occur in phased array radars. If one

redefines the direction angles 0; of Figure 1 in terms of
complements, that is

¢; = 90° - o3 (5)
then

$1 = €0s5@,; = Sin¢) (6)

Ss = C0SOy = singg (7)

Sy
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a number of phased-array radar studies appear to define
angles « and B such that

i

¢ = -=
(8)
¢s = -B
’ 2 number of publications reclated to «;3 trackers as (ilter
etc. exist.

e. The final set of independent covering coordinates
are range and two of the direction angles say

(r’ ¢1, ¢3)'

] The differentials of the scalar functions of Equation 1
are
1 AN
dx? a<§55 dq - (9)
A2 R
dx? =«3xa dg.”
. .
dx? =-‘§5a dq >
and
. axt = ax’ ax? Bxi\ 10
N3 q 3q: ’ 3qz °’ 8q3} (10)

or vector wise

3 v \

P dx b . day-

pdx?' =g . dgqp (1)
5, dx® das
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where the Jacobian matrix of (11) has the three gradient
vectors of (9) as its row-space

=(l’ax1 i
9 q
/Hx 2 -axii ‘
J - £ I = . 12
x3 ' 4 39 | ¢
- ax?
~9 q

The inverse of J exists when the three gradient vectors
are linearly independent. Likewise when the vectors are
linearly dependent the matrix is singular and the values of
the generalized coordinates for wiiich singularities occur
are called poles.

(r,A,E) at the pole (thinking of the earth) elevation angle E
(or latitude) equals 90°.

It is well known that the values of the variables that

make the determinant equal to zero are the singularities that
is

det J = 0. (13)

where

J 1= adj J (det J) (14)

and adj J is adjoint of J or transpose of matrix of co-factors

It 1s also of interest to express the inverse as

37t = @3ty ST (15)

since the computational aspects of inversion is reduced to the
inversion of a symmetric matrix (an easier task-in general).

For example with spherical polar coordinates
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It is also concepfually worthwhile to consider the symmetric
matrix JTJ and JJ! which in general are not equal. These

"“Grammian'" or '"Metric-Matrices" yield insight into orthogonality,
obliqueness etc. of row and column-space vectors. No further
structure properties are considered in this report.

The notation ka

is used to designated the coordinate system for example Jy»
is the Jacobian matrix connecting systems 1 and 2

// dx1x / dr

[ ax? )=J,2.{ dA \; . (16)
. J ‘ /

' dx3 / \\ dE :

In the following tables some of the Jacobians are expressed

as functions of the rectangular coordinates some of the
generalized coordinates and some for both.

Clearly if one divides Equation (16) by At and passes to
the 1limit by velocity relatioas result, that is

/ix\ . &l AN ? 3
i . \. . . \ : E
2 "= 3l § (17)
\ . ‘ ! S
\x? \ qs3
where the example of (16) yields :
q=(r, A, B). (18)




Variance matrix relations are also obtained by trans-
posing Equation (11)

dx = <{dqJ7T (19)

and computing the dyadic product
d><dx = Jdgr<dqdT (20)

In a-priori flight testing one has a sequence j of past
tests and

; Jmax
g(dxdCdx) = +—— L dxD{dx = | (21)
Jmax je1 3x3
or
- T
Exx - quqJ (22)

where € is expectation operator.

Sample variance estimates instead of past or population
sequences yield similar equation forms. The Jacobians are
evaluated about a nominal, or known estimated point. Equation
(22) expresses the well known variance connections via con-
gruent transformations.

In order to further simplify the typing and the results
observe that the unit magnitude "sight-line" vector is

-%—n=€ = (s1, sz, Ss) (23)

<D =1 (24)

where
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{25)
and
the The rectangular coordirates called "directien cosines" of

sight-line vector s . M J
which are s has many equivalent forms, some of

/8 \1 {CECA cE); \ c61\
! s r kCEsA L (rez (27)
\53’ sE / c0y/ \s? J
vhare the sgquare root t

The following matrices ars developed

Ji2
Jzs
Jis Jsoe
Iz Jus
Jrs Jas
Jzs
Jis
sine- gggsédpz thet51ng1;13r1tles {Jis) in transforming from
cm T to rectangular coo s The sipgulariti
cccur when £ rdinates. The singularities

erms of Equaticon (25) and (26) aire used.
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. $1 + $3 = 90°

bbbbb we see a contipnum of singularities as opposed to a
. >1ng*e veint (E=90°) for conventicnal radar or spherical
polar coordinates.

. One trajectory region to watch out for
matrices is when ¢;1=¢,=45°.
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The analyst can study the singularity regions as
spplicable to his particular problem. The position vectors
ezueeﬁ station sites are not included in this report but

i1l be developed in a later report.
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CONCLUSIONS
The geomet:ically related computational problems pre-
sented here are only part of the relations occurring in
range data prccessing,

To be zure, the p051t1on vectors
petween sites and the relations between generaliized

coordinates measured at the two different sites must be
considered. Error propagation studies for a total

Lnstrumen*atlon system will be developed and draw-upon
cme of the relations herein,
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TABLE 1

Jiz = cEcA -rcEsA -TSECA “
i

rCECA  -rSESA J’

0 r(k
] 0
1
. 0
g 2 _}

CESA SE
CA/TCE 0 ‘I

-SESA/r ce/r_’
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TASBLE I1I
I‘"I ){ rcel
/
{ Y = rcé; » S3 = (1-c%0, - czezjl/z
\Z / rsj / r = (X2 + Y2+ zz)‘/2
/C61 r 0
Jisz = I co, 0 T
\ s3 -rch; -rch, /
-\ S3 Sa /
\.
/Xit r 0.
i !
J1:a = ; Y/r 0 r
! - -YXT
A S o !
N ' E
//1 0 0 \
i
2 2 E
soafie| 0w B) me |
: vy |
XY r? 2( Y2\,
0 Zz T ‘.1"’ ‘2—;’,
- r¥X rly r? §
Z Z :
-1 2 E
Jia = “_Z' -XY -X ] 1 3
A ’: aet 313 §
=2
- 2
H ZR :
2 ;
det ng= '1'.'2'
13
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TABLE 1] ;

}== TS2 , , Sz = (1-52¢;~ s2¢;) V2

| . /K \ ' / rsz’m\
= \
4 Nz / \rsés/

/5S¢, T 0 N

.
\-

-rs¢, -rsé;

Jiw
S2 Sa

5 \
A \

1)

S2

Nso, 0 r 7/
/X/r r 0\
= Y/r -Xr/Y -Ir/Y )

t
= % "

:; \, Z/ r 0 ) o /'

/1 0 0 \

- /
4 / \
Tedves Lo rraexe/y Xzr2/y? !

0 XZy?3r2 r2(1+22/Y2)/i ;

[ -r3X/Y -r? ~r32/Y \

i

C-Y-Z3Y X XY/Y aéTJl

i} ' u
- XY -X?

N z 5 Y

bl Lol b Do 3 i M e 0

G b g0 0 ol
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TABLE IV

2% S TS¢y
/ ' /
{\ Y )=‘\ rs2 s Sa2 = (]~52¢1 - s2¢2)1/2
\ / \rsés , 4. = 90° - 0.
1 1
S¢, Irce, 0 \
/ \
Jis = , S -rsq‘:;cm ~rs¢acods |
s s?
S¢s 0 rco;
. X ¥ P N
, ? X‘s\il--—-!;“ 2 0 ",
I Y X [ XQWL/? z2{ 7212
J1 5= - - 11-=o _I‘L i -Z_..}
PT RS T{E rz2:
Z N1z
¥ 0 r1-&
1 0 0
- N o~ -
1 2%
J¥5J15= .0 r(l-x—_‘,-] ‘1+¥} 2XZ 1‘@ 1/2( _z_z_) 12
" I'j ; " ) : rz !
” \ ~ N '
0 rz)gZ‘ X2y L2 '1 Z2:1.2 2 1 zz|
~ we——— - —
N . ra \\» rzj r - r‘ Yz
-r2 ( 2] 2\ 172 Doy AR
~ xzf - <. e KN 220 Bl A RGP i L
r. R O r2's r r? 2
-~ -~ . -
2 1.2 " -
Ade].5=! _gyzézz 1-5_2- ~ .1— xl_ﬁ 1,72 &_Z__Il‘_z_i\"/z
- ' r Y S Yy ' rgi
S ) .
g 212 2,172
'ZTX' -2% -Z! -Egl/z (X2+Y ) I_X
T -y
. N 2 Y

det J = -r(Y2+22)1/2(x24y2)1/2
Y
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i1 0
i
| Cez
Ja23 = 0 -
c29y + c?a,
-2¢ch
0 <ot

C291 + Czez

(c261+c292)l/2 (c2el+c262)1/2

if co; % 08 cb2 £ 0

det J2s = 2(c26; + c26,)!/2

1 0

Tadae= jo AclBal(c?Orrctoa)

0
C91C92{(C291*C292)4~ﬂ

(C291+C292)2

0 c6:¢0,[4(c?0;+c20,2-1]

(c?e;+c?0,)?

C291 4c?9,

L (C29145292)2

pres,

2(c?0,+c?0,) V2

ADJ Jas= 0

(c?0;+c?%8,)?

+
c2g,+c?%s,

——y

By

(C291+C232)}/2

c?e,+c%8,

cB2

(c261+ 282)1/2

c261+c292
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TABLE VI
R =R
A = Tan-t(1-5%01-5205) ¥
S
E = S™ (s¢3)
_ -
1 0 0
524524 TR
Joe=l0 _(1-52¢1-52¢3)'1h 5¢15¢?(L1 S“érscés)
26 s%s - 1
1
0 0
L (1-52¢3) % ]
if s, $ + 1l
/1 0 0 \
/
3£b324={ 0 (1-s2¢;-5%2¢3)7 51563 (1-5%¢1-5%¢3)
‘ 1-s2¢3 .
\o S$1503(1-5%¢)1-524a) 1 [1+s2¢,+5265]
1-52¢, (1-52¢3) (1-52¢y-52¢3)-
B 0 0 h
ADJ Ja= | 0 (1-s%¢s)® 501503 (1-5%¢1-5%¢4) ¥
1 - 5%,
0 0 -(1-5%¢,-52¢ )2
17
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TABLE VII

244) V2

1]
~

~ -1(1-52¢1-
A = TAN <

E = ¢3
1 0 0 \

= Jzs={ 0 j22 2 /)
E | 0 0 jas

£y + (1—52¢1-52¢3)U&
s2¢; (1-s2¢1-s2¢3) 2

sit3- 1

. 1 8 U, AL st o8 0, By
LR e ks

r

:
5332 5¢1S¢3C¢3 :
(s263-1) (1-52¢1-52¢3) Y2 A
'l 0 0 %
J¥5J25=f 0 j§2 2j22 :
0

PR |

2j22 1+4

| S—
MR v

-—

o

j22 0
ADjJa2s=| 0 i -2

[P

0 0 ja2

det stx j22j33
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TABLE VIII

2 . R=R'
» €6y = sé,
5 <82 = 1-5%2¢;-52¢,
1 0 0 "
Jsy < 0 1 0 !
0 ~(1-s%¢1-s52¢,)¥2s¢, -(1-52¢1-52¢2)’1/25;,,2J
1 0 0 ]
I3udse| 0 14524, /(1-524,-5%¢,) S¢15¢2
(1-s2¢1-52¢3)
0 spaso2 s’¢2
I (1-s%¢1-52¢,) (1-s2¢1-52¢2) i
-
S¢2 0
(1-52¢1-524,)12
Joi= - (1'5“2‘;;524’2) 2 0 - sé2
(1-52¢,-52¢,) V2
0 S¢l
(1-s2¢,-5%2¢,) V2
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TABLE IX
B "1 0 0
7 J3s = 0 coy 0
0 - s¢icd, SbaCh2
| (1-s2¢,-52¢,) 2 (1-5261-52¢,) V2 3
1 0 0
stJss = 0 c?¢1(1+s2¢1 /(1-5%4,-5%¢,)) S$1C015¢2Ch,
1'52¢1‘52¢2
3 . 0 S$i1cd1542C9> s2¢,c?¢,
: L ' 1'52¢1‘52¢2 1"52¢1'52¢2 ]
] -1 _ (1-s2¢1-5%¢5)
Jas = - 5562007
P_ Coi15¢2Ch2 0 0 ]
(1-52¢,-52¢,) V2 |
| - -5$2Ch3
v 0
(1-52¢,-52¢,) V2
0 S$1Ch, Coy
] : (1-52¢1-52¢,) ¥2 i
3 i
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TABLE X

Let (q1, q2, q3) = (r, sé¢1, Sd3)

(r’ ¢1: ¢3)

it

(p1, P2, P3)

q: P1

g2 = sin p;

43 = sin p;

/ 1 0 0
)
f,g = <><a—§ = \ 0 cosd, 0 /
0 ¢ Cos
/ \
. / 1 0 0 y
Jusdus =1 0 c?¢, 0 |
\ 0 ] c?¢s /

det J,s5 = Cos¢,€0s¢,
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